19章:远征中的暗礁-黑洞 (第2/3页)
量的五倍.这么大的质量是任何中子星都不可能有的.当然,除这些以外还有别的证据。所以,基本上可以肯定,天鹅座x-1中那个看不见的天体就是一个黑洞.这是人类找到的第一个黑洞。另外,还现有几对双星的特征也跟天鹅座x-1很相似,它们里面也有可能有黑洞。科学家正对它们作进一步的研究.“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。黑洞是体积较小、质量极大的天体。它可以造成时空的无限下陷,另外它自己本身有极大的引力,再加上时空下陷的影响可以把经过或靠近的任何物体吸入这个无底深渊里;有时黑洞也是一个捷径通道,之所以说黑洞是捷径通道,是因为有些黑洞一旦进入就会到另一个地方去那个地方与来时的地方会有几万光年的距离。
[编辑本段]
演变
【黑洞的吸积】黑洞通常是因为它们聚拢周围的气体产生辐射而被现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
黑洞拉伸,撕裂并吞噬恒星天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收的,它也往外边散质子.
【黑洞的蒸】
由于黑洞的密度极大,根据公式我们可以知道密度=质量÷体积,为了让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量很大,体积很小。但是问题就产生了,黑洞会一直存在吗?答案是错误的,黑洞也有灭亡的那天,由于黑洞无限吸引,但是总会有质子逃脱黑洞的束缚,这样日积月累,黑洞就慢慢的蒸,到了最后就成为了白矮星,或者就爆炸,它爆炸所产生的冲击波足以让地球毁灭1o^18万亿次以上。科学家经常用天文望远镜观看黑洞爆炸的画面。它爆炸所形成的尘埃是形成恒星的必要物质,这样就能初步解决太阳系形成的答案了。
【黑洞的毁灭】■萎缩直至毁灭
黑洞会出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬.霍金于1974年做此预言时,整个科学界为之震动。
霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量(参考霍金的《时间简史》,我们可以认定一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程生在黑洞附近的话就会有两种情况生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式e=mc^2表明,能量的损失会导致质量的损失)。当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的度辐射能量,直到黑洞的爆炸。
[编辑本段]
检测
按照黑洞定义,它不能出光,我们何以希望能检测到它呢?这有点像在煤库里找黑猫。庆幸的是,有一种办法。正如约翰・米歇尔在他1783年的先驱性论文中指出的,黑洞仍然将它的引力作用到它周围的物体上。天文学家观测了许多系统,在这些系统中,两颗恒星由于相互之间的引力吸引而互相围绕着运动。他们还看到了,其中只有一颗可见的恒星绕着另一颗看不见的伴星运动的系统。人们当然不能立即得出结论说,这伴星即为黑洞――它可能仅仅是一颗太暗以至于看不见的恒星而已。
还有其他不用黑洞来解释天鹅x-1的模型,但所有这些都相当牵强附会。黑洞看来是对这一观测的仅有的真正自然的解释。尽管如此,我和加州理工学院的基帕.索恩打赌说,天鹅x-1不包含一个黑洞!这对我而言是一个保险的形式。我对黑洞作了许多研究,如果现黑洞不存在,则这一切都成为徒劳。但在这种情形下,我将得到赢得打赌的安慰,他要给我4年的杂志《私人眼睛》。如果黑洞确实存在,基帕.索思将得到1年的《阁楼》。我们在1975年打赌时,大家8o%断定,天鹅座是一黑洞。迄今,我可以讲大约95%是肯定的,但输赢最终尚未见分晓。
现在,在我们的星系中和邻近两个名叫麦哲伦星云的星系中,还有几个类似天鹅x-1的黑洞的证据。然而,几乎可以肯定,黑洞的数量比这多得太多了!在宇宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了。黑洞的数目甚至比可见恒星的数目要大得相当多。单就我们的星系中,大约总共有1千亿颗可见恒星。这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动率,单是可见恒星的质量是不足够的。我们还有某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的1o万倍。星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上的引力之差或潮汐力会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去。正如同在天鹅x-1情形那样,气体将以螺旋形轨道向里运动并被加热,虽然不如天鹅x-1那种程度会热到出x射线,但是它可以用来说明星系中心观测到的非常紧致的射电和红外线源。
人们认为,在类星体的中心黑洞,其质量大约为太阳的1亿倍。落入此重的黑洞的物质能提供仅有的足够强大的能源,用以解释这些物体释放出的巨大能量。当物质旋入黑洞,它将使黑洞往同一方向旋转,使黑洞产生一类似地球上的一个磁场。落入的物质会在黑洞附近产生能量非常高的粒子。该磁场是如此之强,以至于将这些粒子聚焦成沿着黑洞旋转轴,也即它的北极和南极方向往外喷射的射流。在许多星系和类星体中确实观察到这类射流。
人们还可以考虑存在质量比太阳小很多的黑洞的可能性。因为它们的质量比强德拉塞卡极限低,所以不能由引力坍缩产生:这样小质量的恒星,甚至在耗尽了自己的核燃料之后,还能支持自己对抗引力。只有当物质由非常巨大的压力压缩成极端紧密的状态时,这小质量的黑洞才得以形成。一个巨大的氢弹可提供这样的条件:物理学家约翰.惠勒曾经算过,如果将世界海洋里所有的重水制成一个氢弹,则它可以将中心的物质压缩到产生一个黑洞。(当然,那时没有一个人可能留下来去对它进行观察!)更现实的可能性是,在极早期的宇宙的高温和高压条件下会产生这样小质量的黑洞。因为一个比平均值更紧密的小区域,才能以这样的方式被压缩形成一个黑洞。所以当早期宇宙不是完全光滑的和均匀的情形,这才有可能。但是我们知道,早期宇宙必须存在一些无规性,否则现在宇宙中的物质分布仍然会是完全均匀的,而不能结块形成恒星和星系。
很清楚,导致形成恒星和星系的无规性是否导致形成相当数目的“太初”黑洞,这要依赖于早期宇宙的条件的细节。所以如果我们能够确定现在有多少太初黑洞,我们就能对宇宙的极早期阶段了解很多。质量大于1o亿吨(一座大山的质量)的太初黑洞,可由它对其他可见物质或宇宙膨胀的影响被探测到。然而,正如我们需要在下一章看到的,黑洞根本不是真正黑的,它们像一个热体一样光,它们越小则热光得越厉害。所以看起来荒谬,而事实上却是,小的黑洞也许可以比大的黑洞更容易地被探测到。
[编辑本段]
现历程
1967年,剑桥的一位研究生约瑟琳.贝尔现了天空射出无线电波的规则脉冲的物体,
[astronomy]theb1ackho1e这对黑洞的存在的预言带来了进一步的鼓舞。起初贝尔和她的导师安东尼.赫维许以为,他们可能和我们星系中的外星文明进行了接触!我的确记得在宣布他们现的讨论会上,他们将这四个最早现的源称为1gm1-4,1gm表示“小绿人”(“1itt1egreenman”)的意思。然而,最终他们和所有其他人都得到了不太浪漫的结论,这些被称为脉冲星的物体,事实上是旋转的中子星,这些中子星由于在黑洞这个概念刚被提出的时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光度有限的现表明引力对之可有重要效应。
1983年,剑桥的学监约翰・米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸――任何从恒星表面出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。
事实上,因为光是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很不协调。(从地面射上天的炮弹由于引力而减,最后停止上升并折回地面;然而,一个光子必须以不变的度继续向上,那么牛顿引力对于光如何生影响呢?)直到1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至又过了很长时间,这个理论对大质量恒星的含意才被理解。
【黑洞的探索】
互相旋转的黑洞1928年,一位印度研究生――萨拉玛尼安・钱德拉塞卡――乘船来英国剑桥跟英国天文学家阿瑟.爱丁顿爵士(一位广义相对论家)学习。(据记载,在本世纪2o年代初有一位记者告诉爱丁顿,说他听说世界上只有三个人能理解广义相对论,爱丁顿,然而,钱德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大度差被相对论限制为光。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。钱德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为钱德拉塞卡极限。)苏联科学家列夫.达维多维奇.兰道几乎在同时也得到了类似的现。
这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比钱德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英里和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒
(本章未完,请点击下一页继续阅读)