最新网址:m.xvipxs.net
第498章 严重的分歧 (第1/3页)
马常胜忙说:“跨声速风扇的叶尖区域气流速度通常超过声速,而根部区域仍为亚声速,形成‘混合流动’状态。这种速度差异导致激波与边界层相互作用,易导致流动分离,产生显著能量损失。斯贝发动机的叶片损失系数比我们仿造出来的跨声速风扇损失系数要小15%以上。除了在叶片吸力面设置锯齿状凹槽之外,我们没研究出别的特别之处。”
“还有它的风扇叶片采用钛合金Ti-6Al-4V整体锻造,叶根采用燕尾形榫头,可承受550kN的离心力。我们引进斯贝发动机的时候,同时引进了钛合金无余量精锻工艺,解决了叶片制造的难题。”
程时:“设置锯齿状凹槽是将分离区长度缩短。斯贝发动机的奥秘还有采用大弯掠造型的叶片。弯掠叶片设计是三维流场优化的核心技术。传统直叶片在跨声速流动中,叶片前缘易产生正激波,导致激波后压力骤升、边界层分离。弯曲叶片通过叶型周向弯曲,使气流在叶片通道内产生斜激波-膨胀波组合,将正激波强度降低转化为斜激波,激波损失可减少30%到40%。”
“弯曲叶片使叶片表面压力分布更均匀,抑制叶顶间隙处出现传统直叶片常见的‘角区分离’问题。漂亮国NASA在不久前的跨声速压气机试验就已经证明周向弯曲叶片可使叶顶分离区面积缩小50%以上。”
“还有采用串列静子结构,末级静子为双排叶片,减少角区分离,使总压恢复系数提升”
马常胜:“可是说起来容易,想要做到却很难。毕竟我们飞机需要的动力会根据机型不同而改变,不可能全部都照抄斯贝发动机。”
程时:“可以用之前我们从英吉利引进的Aviaflow软件来辅助风扇叶型的设计,进行二维跨声速流场计算。修正流场激波结构、优化负荷分布,从根本上降低损失、抑制失速。”
“在wp-6发动机上增加的跨声速叶片,出口气流速度马赫数0.5到0.6,与原压气机进口条件匹配,避免因流速突
(本章未完,请点击下一页继续阅读)
最新网址:m.xvipxs.net